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Abstract-We consider the heat transfer through a gas contained between two parallel plates. We assume 
a gray gas with the radiative emission corresponding to local thermodynamic equilibrium. The conduction 
in the gas is treated by using a kinetic theory approach based on a Bhatnagar-Gross-Krook model. The 
radiative and kinetic transport equations are coupled through the local “temperature” which appears in 
both emission terms. The problem is formulated via a Milne-Eddington-Lees moment method. The 
optical thickness, the Knudsen number and the ratio of the continuum conduction to the continuum 
radiative heat transfer are parameters in the problem. Specific solutions are obtained for the case when 
the ratio of the temperature difference between the plates to a characteristic temperature is small. These 

solutions are compared with approximate results. 
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NOMENCLATURE 

approximation for intensity, equation 

(11); 
non-dimensional intensity perturba- 
tion, [A/(oTJn)] - 1; 
constant, 32/l 57~ ; 
distance between plates ; 
velocity distribution function; 
intensity of radiation; 
Boltzmann constant; 
thermal conductivity coefficient; 
absorption coefficient ; 
mass of molecule ; 
number density ; 
heat flux ; 
non-dimensional heat flux, PQ/oTz ; 
Prandtl number ; 
specific gas constant, k/m ; 
temperature ; 
non-dimensional temperature 

perturbation, (T/T,) - 1; 
spatial coordinate. 

Greek symbols 
CC parameter defined in equation (27) ; 
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parameter defined in equation (27) ; 
constant appearing in the collision 
frequency defined in equation (32); 

2jT, - T,l/(Th + T,); 
direction cosine; 
Stefan-Boltzmann constant; 
non-dimensional density 

perturbation, (n/n,) - 1; 
molecular velocity; 
elemental vojume ; 
optical depth, j K dy ; 
elemental solid angle ; 
parameter defined in equation. (37). 

Subscripts 
c, lower plate ; 
cond, conduction ; 
h, upper plate ; 

M, Maxwellian ; 

0, reference conditions ; 
rad, radiation. 

INTRODUCTION 

THE TRANSFER of energy in an absorbing, 
emitting and conducting medium is of impor- 
tance in many engineering problems. The 
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complexity of the interaction between conduc- function given by 
tion and radiation has been discussed in 
several investigations; see, for example, the 

f&n, T) = n(m/2rckT)+ exp [ -m5’/2kT]. (4) 

review articles by Viskanta and Grosh [l, 2] and The distribution function satisfies the plate 
Cess [3]. In all these studies the contribution conditions 
from conduction has been considered from the 
point of view of a continuum using the Fourier 

f( - D/2) = f&L T,)? rJ > 0 
(5) 

law of heat conduction. In this study we shall f( + D/2) = L&i,, Th)> tr < 0 
examine the more general problem using a 
kinetic theory description and recover the 

and by conservation of mass 

Fourier law results as a limiting case. n = J,f d3<. (6) 

ONE DIMENSIONAL EQUATIONS 

The equation for the conservation of energy 
is given by 

We consider the transfer of energy by photons 
and molecules in the one-dimensional system 

$ (Qcond + QraJ = 0 (7) 

bounded by two isothermal plane parallel where 
plates. The plate at y = D/2 is maintained at a 
temperature Th; at y = -D/2 the plate tem- Q cond = jht2&f d34 63) 

perature is T,. and 
The equation of radiative transfer for a gray. 

non-scattering medium is given by* Qrad = s IL’ do. (9) 

P dl _= -I.$ 
In the equation of radiative transfer and in 

K dy 
(l) the modified Boltzmann equation we have used 

a single “temperature” T. This should be a 
where we have used the source function cor- 
responding to local thermodynamic equilibrium. 

fair approximation for systems having small 

The black body intensities leaving the two plates 
non-equilibrium effects.* A relation for the 
temperature may be obtained from the radiation, 

are specified by modified Boltzmann and energy equations: 

I( - D/2) = aTf/n. P>O 

I 

(2) (3) 6n’kT + 4KoT4 = 6n jfrnt2fd3t 

I( + D/2) = aT;/n, p < 0. + 1 ZK dcr,. (10) 

The kinetic theory distribution function An accurate numerical solution to the above 
should be determined from the solution of the 
Boltzmann equation. We, however, use a model 

system of equations subject to the given bound- 

of the type proposed by Krook [4] to describe 
ary conditions appears to be quite difficult to 
obtain and is perhaps unnecessary in view of the 

the collisions and obtain successful application and accuracy of moment 

5,; = - Sn[f -f&i. T)] 
methods in both radiating and rarefied gas 

(3) flows. We, therefore, seek approximate solutions 
to the equations by assuming the following 

wheref, is the Maxwellian velocity distribution form for I and f : 

* The direction cosine, p. is defined as cos 0 where 0 is the * See, for example. Kulander [5] for a discussion of 
angle measured from the positive y direction. non-equilibrium effects. 
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This set of equations, while significantly 
simpler than the exact equations, is still quite 
difficult to solve.* 

I+(/4 Y) = A+(Y), P>O 
I-J&Y) = A--(Y). PC0 (11) 
f+iL Y) = fnXn1. T,), (5, > 0 

f-h Y) = f&23 T,h ry < 0. 
These expressions are suggested by the Milne- 
Eddington [6] and Lees [7] type of analysis. 
The “two-sided” nature of f and f, which is a 
feature of the optically thin and free molecular 
solutions, is retained in these approximations. 
The variables, If, I-, n,, n2, T1, and T,, are 
obtained from moment equations as in the 
Milne-Eddington and Lees methods (MELEES). 
These equations, together with the boundary 
conditions. are 

THE LINEARIZED PROBLEM 

’ When 1 T, - T,l/( Th + T,) is small we can 
linearize the equations and boundary condi- 
tions. This introduces important simpli~cations 
yet still retains the basic features of the problem. 
Certainly. the linear results should approxi- 
mately reproduce the behavior of the non- 
linear system for the case of small temperature 
differences. Indeed, for the case when conduc- 
tion dominates it has been shown [S] that the 
linearized moment method solution can be 
applied in highly non-linear problems (Th/ir, 2~ 
10) to give the heat transfer. according to the 
moment solution, within an error of 10 per cent. 

We now define ~rturbation quantities t, v 
and a according to 

;A&+ -A_)= -(A+ +A-)+? (12) 

&ca+ + A-) = - $(A+ - A-) 

n,Tt - n,Tj = 0 

n,T, + n2T2 = constant 

(13) 

(14) 

(15) 

= - F[n,T, + n2T2 - 2nT] (17) 

= 

; [$n(n,R2T2 + n,R+T;)] 

6n m =-_ K 
I 

2Ai [n1(2=7? - n2(2W)+1 (19) 

where 
dt = Kdy 

Qrad = n(A+ - A-) 

T,f l-D/2) = & 

A+( - D/2) = aT;/x 

A-( + D/2) = aT;t/z 

T = T,(l + t) 

n= n,(l + v) 
(21) 

A= ?(I + a) 

and obtain the following set of equations 

:(a+ - a-) = z,[16t - 2(u+ + a-)] (22) 

- a-) (23) 

& (rr - tz) = - at& + t2 - 29 (24) 

d+j (tr + t2) = - ab(tl - t2) (25) 

4 = t, - t, f /$a+ - a-) (26) 

* We are currently attempting to solve these non-linear 
equations numerically. 

T,(- D/2) = T, 
(201 
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where 

T, = (K + T,)/Z c = (Th - T,)/T, 

r/ = y/d = z/q,, a = 36n,Dx*/4(2RTO)* (27) 

/I’ = aT$ci/poRTo(2RTo)f, b = 32/l% 

Q = (2RT,)*(p,RT,)q/~~ = aT%lP : 

and the boundary conditions are 

t1( - l/2) = --E/2 

tz( + l/2) = E/2 

I 

(28) 
a’(-l/2) = -2E 

a-( + l/2) = 2E. 

The preceding system of linear equations may 
be solved directly and we obtain 

-Q MELEES = -qMELEES 

aT:c PC 

(A/B) + 4B 

= Af(l + ab/2) + Be/?( 1 + 32,/4) 
(29) 

where 

A = (3qJ21) tanh (l/2) + 1 

B = (ah/l) tanh (I/2) + 1 

e = 8ba/(3z, + 8b/3a) ’ (30) 

f = 32,/(32, + 8b/!?a) 

l2 = (322,a + 8b/?z,a2)/(a + Sz,J?) J 

DJSCUSSION OF RESULTS AND CONCLUSIONS 

Before discussing the general problem and 
results we first consider the important continuum 
or no-slip limit. In this limit the value of the 
ratio of the particle mean free path, A, to the 
characteristic length, D, is zero, that is, zero 
Knudsen number. From equation (27) we have 

3 6&D 

a=40f 
(31) 

and choosing 6 to match the continuum 
(Chapman-Enskog) thermal conductivity for a 

monatomic gas we obtain 

6 = Pr kTO/p(TO). 

Using Pr = 5 and 

(32) 

p( TO) = y (8kT,/m)+ c? (33) 

yields 

a = nD/41 (34) 

so that the no-slip limit corresponds to an 
infinite value for a. The corresponding value 
for the thermal conductivity is given by 

k, = 2DaTzJuflb. (35) 

The non-dimensional heat flux in the no-slip 
limit is given by 

Qm slip qno slip 
------_-- 

aT& 86 

= [8 + (4Q/3z,) (L coth (L/2) + 3~J2)] (4 + Q) 

8(1 + 32,/4) + Q[Lcoth(L/2) + 3~J2] 

(36) 
where 

(37) 

and 

c = $(3 + 12/Q). (38) 

This result is of special importance because it 
deinonstrates the parameters and their analytic 
dependence in the combined conduction and 
radiation problem. The parameters are the 
optical depth, zo, and the ratio denoted by 52 
which is a measure of the importance of con- 
tinuum conduction in comparison to optically 
thick radiation.* 

Probstein [9] calculated the net continuum 
heat-transfer rate by neglecting the interaction 
between conduction and radiation and simply 
added the two “separate” heat fluxes in parallel. 

* It should be noted that various combinations of 52 and 
70 are present. 
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Good agreement with accurate numerical cal- 
culations was noted for a particular ratio of 
the plate temperatures. Also see Einstein [lo] 
for additional calculations. Applying this pro- 
cedure to our problem gives 

Qm slip add. ------=- 4110 slip add. 

CT& Bc 

4 
52 

= [ 
1 

1 + 32,/4 
+ 

32, 
1 . (39) 

In Table 1 the relative difference between the 
no slip and the no slip additive heat fluxes as 

Table 1. Relative difference between no slip and 
additive heatfluxes 

1 -(Qno ~11~ add&no SI,P). 

s.2 To = 0.1 To = 1.0 t0 = 10.0 

OGOl 0.014 0.010 0.002 
0.010 0025 0.029 0.006 
0.100 0,022 0.070 0.017 
1GOO 0,007 0.081 0.030 

10000 0.001 0.022 0.015 
1000Z)O OGOO 0.003 0002 

Galculated from the expressions in equations 
(39) and (36) is presented. We see from this 
table that for the conditions considered the 
additive approximation gives results which are 
less than those obtained from the MELEES 
method. However, the maximum difference 
between the results is 8.1 per cent and occurs for 
z0 = 1.0 and Q = 1.0. Note that for the linearized 
problem this result is independent of the plate 
temperature. That the maximum difference 
occurs for moderate values of r. and Q is 
readily explained. For large values of the 
optical depth, z,,, the diffusion or Rosseland 
approximation is valid and the independent 
addition procedure is correct. For small values 
of z. there is little absorption and consequently 
little interaction so that the independent addition 
is a good approximation. When Q is large, 
conduction dominates, and since equation (39) 
contains the correct continuum conduction 
term errors should be small. Similarly, when 
52 is small and z,, is large in comparison to 
SZ*, radiation dominates and equation (39) 

contains the correct limiting terms. When Sz is 
small and z. is small in comparison to SZf, 
equation (39) again contains the correct limit- 
ing terms.* 

We return to the more general problem and 
note that in addition to the parameters r,, and 
51 (and combinations of them) occurring in the 
no slip analysis we must also consider the 
parameter CC, which is inversely proportional 
to the Knudsen number. The heat flux as 
determined from equation (29) is presented in 

t- -l 

0.22 
001 0-l 

I-l 
IO 

FIG. 1. No slip heat flux vs. D for z0 = 0.1, 1.0 and 10.0. 

Figs. 2-4 for values of the optical depth, zo? of 
0.1, 1.0, and 10.0, respectively. For large values 
of a, small particle mean free path, the heat 
flux correctly merges with the no slip curves 
of Fig. 1. For small values of LY, large particle 
mean free path, the heat flux remains essentially 
constant until conduction becomes important. 

A simple approximate solution for the general 
problem can be obtained by neglecting the 
coupling between conduction and radiation 
and adding the two heat fluxes as was done for 
the continuum limit. The relation for the heat 

* For this case, Q d 1 and 50 Q 62*, radiation dominates 
only when 62/r, < 1. 
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FIG. 2. Milne-Eddington-Lees heat flux vs. 52 for a = 0~01.0~1, 1.0. 10.0 and 
I: for an optical depth of 0.1. 

100 

IO 

I 
001 I IO 100 IOCO 

il. 

FIG. 3. Milne-Eddington-Lees heat flux vs. bd for G( = 0.01, 0.1. 1.0. 100 and 
~1, for an optical depth of 1.0. 

loo0 

I 
0.01 QI I IO IO0 rem 

n 
FIG. 4. Milne-Eddington-Lees heat flux vs. D for tl = 0.01. 0.1, 1.0, 1OQ and 

XI for an optical depth of 10.0. 
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Table 2. Relative difference between Milne-Eddington-Lees and additive heatfluxes 

K%mQYELEES) 

n 
c( 

OQO1 0.01 0.1 1.0 10.0 1000 1000.0 

OQOl 
0.010 
0100 
1 .oOO 

100IO 
100000 

1000000 

OQOO 
OQOO 
0.000 
0.000 
oQO3 
0.011 
0.013 

0000 
0.000 
0000 
O.COO 
0.011 
0.023 
0,024 

(a) ~~ = 0.1 

0.000 OQOO OQOO OQOO OQOQ 
OQOO OQOO 0~0ocl oQoo oQoo 
OQOO 0.000 OQOO OQOO OQOO 
OQOO 0~000 0Qoo 0Qoo o@oo 
0.013 0005 0.000 00@3 0000 
0,021 0006 0000 0.000 0.000 
0,022 0007 OQOO O.OOiI OQOO 

0001 
0.010 
0~100 
1.000 

10000 
100000 

1OOOM)O 

(b) z,, = 1.0 
0.000 0000 0.000 oQOo 
0.000 0000 OQOO OQOO 
0QOO OQOO o@O OOtXl 
0000 o%)o OQOO 0.000 
0000 0001 0,010 0.026 
0.003 0.017 0.057 0.073 
0009 0.028 0.068 0.080 

0000 0000 0000 
0.000 0QoO 0000 
O.OOU 0002 0000 
0.002 O@z)l 0000 
0.010 O@Ol OMKI 
0.02 1 0~002 O@OO 
0.022 0.003 0000 

(c) 50 = 10.0 
0001 0.000 0.000 0~000 0.000 0,000 0.000 0.000 
0.010 O+lC0 0.000 OQOO OQOO 0QOo OQOO 0~001 
0.100 0.000 0.000 0.000 OQOO 0001 0006 0.011 
1000 OQOO 0.000 O%Il OQO6 0.032 0.048 0.037 

1oQOO 0000 0000 OQOl oQO5 0.009 0.002 0,000 
100~000 OQOO 0000 0003 0.013 0008 OQOl OQOO 

1000~000 0.001 0004 0,014 0.028 0.014 0002 0.000 

flux is easily obtained and is given by the Milne-Eddington-Lees formulation for 

0.. “.~ small temperature differences. However, the 
Xadd. Yadd. ~ -- 

Be 

1 baSZ 1 

+ 32,/4) + 62, (1 + ab/2) 1 ’ (40) 
In Table 2 the relative difference between the 
Milne-Eddington-Lees and the additive heat 
fluxes as calculated from the expressions in 
equations (29) and (40) is presented. For the 
conditions calculated, the maximum difference 
is 8 per cent and occurs at r,, = 1.0, Q = 1.0, 
and a = 1000.0. Indeed, for this value of a the 
no slip formulation may be used. 

Therefore. in general and in particular for 
no slip conditions, the simple addition of two 
separate heat fluxes gives good agreement with 

accuracy of this approximation when used in 
more complex situations is still uncertain. 
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R&mC-Nous considerons le transport de chaleur a travers un gaz contenu entre deux plaques paralleles. 
Nous supposons que la gaz est gris avec une emission de rayonnement correspondant a I’bquilibre 
thermodynamique local. On traite la conduction dans le gaz en employant une thtorie cinktique bass& 
sur un mod&e de Bhatnagar-Gross-Krook. Les equations de transport cinetique et par rayonnement 
sont couplees par le moyen de la “temperature” locale qui apparait dans les deux termes d&mission. 
Le probleme est form& au moyen d’une mtthode des moments du type Milne-Eddington-Lees. 
L’tpaisseur optique, le nombre de Knudsen et le rapport de la conduction en regime continu au transport 
de chaleur par rayonnement en regime continu sont des parambtres du probl&me. On obtient des solutions 
specifiques dans le cas ou le rapport de la difference de temperature entre les plaques a une temperature 

caracteristique est faible. Ces solutions sont compa&s avec des rtsultats approches. 

Zlrrammenfaaanng-Es wird der Warmedurchgang durch eine Gasschicht zwischen zwei parallelen Platten 
betrachtet. Dabei wird das Gas als grau mit einer Emission, entsprechend dem iirtlichen thermo- 
dynamischen Gleichgewicht angenommen. Die Leitung im Gas wird durch eine kinetische Theorie auf 
Grund eines BhatnagarGross-Krook-Modells beriicksichtigt. Die Gleichungen fiir die Strahlung und 
den Transport kinetischer Energie sind fiir die ortliche “Temperatur” gekoppelt, die in beiden Ausdriicken 
erscheint. Das Problem wird formuliert mit Hilfe einer Milne-Eddington-Lees Momentemnethode. Die 
optische Dicke, die Knudsen-Zahf und das Verhtitnis von kontinuierlicher Leitung zu kontinuierlicher 
Strahlung stellen Parameter des Problems dar. Spezielle Lijsungen werden fiir den Fall erhalten, dass 
das Verhlltnis von Temperaturdifferenz zwischen den Platten zu einer charakteristischen Temperatur 

klein ist. Diese Losungen werden mit Naherungsergebnissen verglichen. 

AHHOTaqws-PaCCMoTpea TennOO6MeH Yepea ra3, aaunroqenunti Memay RByMH napannenb- 

Hb,MM WIaCTBHaMH. ra3 CqATaeTCR CepbtM C H3JIyqeHHeM, COOTBeTCTByH)ILtIIM JIOKaJIbHOMy 

TepMOAAHaMWeCKOMy paBHOBeCMIo. TeIIJIOIIpOBOJJHOCTb B ra3e TpaKTyeTCFI B npn6nnXennu 
KnHeTwIecKom Teopml, 0cKoBamoM Ha Mo;lem EaTKarapa-rpocca-Kpytia. Ypamemwi 

JlyWCTOrO TeWlOO6MeHa M KMHeTLlKIl CBH3aHbI qepe3 JIOKaJIbHyIO TeMIIepaTypy, BXOflFIIIlyIO 
B o6a weHa, xapaKTepmyrouwe nsnyqeme. Saflava @OpMynHpyeTCR MeTOROM MOMeHTOB 
MWIbHa-3~AkIHrTOHa-~Inca. OIITWSeCKaFI TOJIIIUfHa, 'IIICJIO KHyACeHa II OTHOUIeHMe TeIIJIO- 
06MeHa TeIIJIOnpOBO~HOCTbfO K TenJIOO6MeHy 113JIyqeHHeM RBJIRIOTCFI IElpaMeTfLlaMM 33JJaW. 

~IOJIJWHbr pNIEHRH AJIFI YaCTHOI'O CJIJ'WH He6OJIbILIOrO OTHOLIIeHAR P33HOCTH TeMIIep3TJ'p 

IlJIaCTllH K XapaKTepHOfi TeMIlepaType. 3TA petIIeHHR CpaBHABaIOTCH C II~HhJIMlKeHHhIMM 
pe:,yJIbTaTaMM. 


